(本题7分)如图,一副三角板的两个直角顶点重合在一起。(1)比较与的大小,并说明理由;(2)与的和为多少度?为什么?
某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?
某公司员工的月工资如下:
员工
经理
副经理
职员 A
职员 B
职员 C
职员 D
职员 E
职员 F
杂工 G
月工资 / 元
7000
4400
2400
2000
1900
1800
1200
经理、职员 C 、职员 D 从不同的角度描述了该公司员工的收入情况.
设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为 k 、 m 、 n ,请根据上述信息完成下列问题:
(1) k = , m = , n = ;
(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是 .
如图,已知 AD = BC , BD = AC .求证: ∠ ADB = ∠ BCA .
先化简,再求值: x 2 - 4 x + 4 x 2 - 4 ÷ x 2 - 2 x x + 2 ,其中 x = 1 2 .
如图1,在矩形 ABCD 中, AB = 5 , BC = 8 ,点 E , F 分别为 AB , CD 的中点.
(1)求证:四边形 AEFD 是矩形;
(2)如图2,点 P 是边 AD 上一点, BP 交 EF 于点 O ,点 A 关于 BP 的对称点为点 M ,当点 M 落在线段 EF 上时,则有 OB = OM .请说明理由;
(3)如图3,若点 P 是射线 AD 上一个动点,点 A 关于 BP 的对称点为点 M ,连接 AM , DM ,当 ΔAMD 是等腰三角形时,求 AP 的长.