(本小题共13分)已知函数的部分图象如图所示.(Ⅰ)求函数的解析式;(Ⅱ)求函数在区间上的最大值与最小值.
本题共有3个小题,第1小题4分,第2小题5分,第3小题5分.设等比数列的前项的和为,公比为.(1)若成等差数列,求证:成等差数列;(2)若(为互不相等的正整数)成等差数列,试问数列中是否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由;(3)若为大于的正整数.试问中是否存在一项,使得恰好可以表示为该数列中连续两项的和?请说明理由.
本题共有2个小题,第1小题6分,第2小题6分 在上海自贸区的利好刺激下,公司开拓国际市场,基本形成了市场规模;自2014年1月以来的第个月(2014年1月为第一个月)产品的内销量、出口量和销售总量(销售总量=内销量出口量)分别为 、和(单位:万件),依据销售统计数据发现形成如下营销趋势:,(其中为常数,),已知万件,万件,万件. (1)求的值,并写出与满足的关系式; (2)证明:逐月递增且控制在2万件内.
本题共有2个小题,第1小题4分,第2小题6分.已知数列的首项.(1)求证:数列为等比数列;(2) 记,若,求最大正整数.
本题共有2个小题,第1小题4分,第2小题4分.已知,,且函数图象上的任意两条对称轴之间距离的最小值是.(1)求的值;(2)将函数的图像向右平移个单位后,得到函数的图像,求函数的解析式,并求在上的最值.
本题共有2个小题,第1小题4分,第2小题4分.在中,内角的对边分别为.已知.(1)求的大小;(2)若,求的面积.