(本小题共13分)设数列满足:,,.(Ⅰ)求数列的通项公式及前项和;(Ⅱ)已知数列是等差数列,为的前项和,且,,求的最大值.
已知函数:(1)讨论函数的单调性;(2)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,函数在区间上总存在极值?(3)求证:.
某地区预计明年从年初开始的前个月内,对某种商品的需求总量(万件)与月份的近似关系为.(1)写出明年第个月的需求量(万件)与月份的函数关系式,并求出哪个月份的需求量超过1.4万件;(2)如果将该商品每月都投放市场p万件,要保持每月都满足市场需求,则p至少为多少万件
设函数.(1)求函数的最小正周期及其在区间上的值域;(2)记的内角A,B,C的对边分别为,若且,求角B的值.
已知等差数列是递增数列,且满足 (1)求数列的通项公式;(2)令,求数列的前项和
如图,在四棱锥中,底面是矩形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面EFD.