(本小题共13分)设数列满足:,,.(Ⅰ)求数列的通项公式及前项和;(Ⅱ)已知数列是等差数列,为的前项和,且,,求的最大值.
命题:关于的不等式的解集为;,命题:函数为增函数.如果命题“”为真命题,“”为假命题,求实数的取值范围.
如图,椭圆的一个焦点是,为坐标原点. (1)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (2)设过点的直线交椭圆于两点.若直线绕点任意转动,则有,求的取值范围.
已知椭圆:的右焦点,过的直线交椭圆于两点,且是线段的中点. (1)求椭圆的方程; (2)已知是椭圆的左焦点,求的面积.
学校从参加高二年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下: [40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.
(1)在给出的样本频率分布表中,求的值; (2)估计成绩在80分以上(含80分)学生的比例; (3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率. 样本频率分布表如下:
已知长为的线段的两个端点分别在轴、轴上滑动,是上一点,且,求点的轨迹的方程.