在直角坐标系中描出下列各点:A(4,1),B(1,3),C(1,-1),D(-2,1).(1)连接AB、CD,此两条线段有怎样的位置关系?(2)写出由AB到CD的变化过程.
张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价元/吨与采购量吨之间函数关系的图象如图中的折线段所示(不包含端点,但包含端点).(1)求与之间的函数关系式;(2)已知老王种植水果的成本是2800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润最大?最大利润是多少?
如图,已知A、B、C、D四点均在以BC为直径的⊙O上,AD∥BC,AC平分∠BCD,∠ADC=120°,BC=4.(1)求扇形ODC的面积;(2)求四边形ABCD的周长.
如图所示,OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.
请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘: (1)用树状图表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率。
如图,抛物线与直线交于A,C两点,与x轴交于点A,B.点P为直线AC下方抛物线上的一个动点(不包括点A和点C),过点P作PN⊥AB交AC与点M,垂足为N,连接AP,CP.设点P的横坐标为m.(1)求b的值;(2)用含m的代数式表示线段PM的长并写出m的取值范围;(3)求△PAC的面积S关于m的函数解析式,并求使得△APC面积最大时,点P的坐标;(4)直接写出当△CMP为等腰三角形时点P的坐标.