(本小题满分12分)设函数.(Ⅰ)当时,求的极值;(Ⅱ)设上单调递增,求的取值范围;(Ⅲ)当时,求的单调区间.
函数的图象记为E.过点作曲线E的切线,这样的切线有且仅有两条,求的值.
为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:(,为常数),若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小?并求出最小值.
证明:.
已知实数满足,证明:.
如图1,在直角梯形中,,,.将沿折起,使平面平面,得到几何体,如图2所示.(1)求证:⊥平面;(2)求几何体的体积.