(本小题满分13分)已知椭圆的离心率为,右焦点到直线的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆右焦点斜率为的直线与椭圆C相交于E、F两点,A为椭圆的右顶点,直线AE,AF分别交直线于点M,N,线段MN的中点为P,记直线的斜率为,求证:为定值.
(本小题满分12分) 已知函数. (Ⅰ)若,令函数,求函数在上的极大值、极小值; (Ⅱ)若函数在上恒为单调递增函数,求实数的取值范围.
((本小题满分12分) 数列的前项和记为,,点在直线上,. (Ⅰ)当实数为何值时,数列是等比数列? (Ⅱ)在(Ⅰ)的结论下,设,是数列的前项和,求的值.
(本小题满分12分) 如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直, . (Ⅰ)求证:; (Ⅱ)在上找一点,使得平面,请确定点的位置,并给出证明.
(本小题满分12分) 已知向量,函数. (Ⅰ)求函数的最小正周期; (Ⅱ)已知、、分别为内角、、的对边, 其中为锐角,,且,求和的面积.
(本小题满分12分) 设集合,,分别从集合和中随机取一个数和. (Ⅰ)若向量,求向量与的夹角为锐角的概率; (Ⅱ)记点,则点落在直线上为事件, 求使事件的概率最大的.