(本小题满分10分)选修4-1:几何证明选讲如图,是的一条切线,切点为,直线,,都是的割线,已知.(1)求证:;(2)若,.求的值.
已知cos(π+α)=,α为第三象限角.(1)求,的值;(2)求sin(α+),tan2α的值.
已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线L的参数方程为 (t为参数)(1)写出直线L的普通方程与Q曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C,设 M(x,y)为C上任意一点,求的最小值,并求相应的点M的坐标.
已知函数的图象上一点P(1,0),且在P点处的切线与直线平行.(1)求函数的解析式;(2)求函数在区间[0,t](0<t<3)上的最大值和最小值;(3)在(1)的结论下,关于x的方程在区间[1,3]上恰有两个相异的实根,求实数c的取值范围
厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格品的概率;(2)若厂家发给商家20件产品,其中有3件不合格.按合同规定该商家从中任取2件进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及数学期望E(ξ),并求该商家拒收这批产品的概率.
给出四个等式:1=11-4=-(1+2)1-4+9=1+2+31-4+9-16=-(1+2+3+4)……(1)写出第5,6个等式,并猜测第n(n∈N*)个等式(2)用数学归纳法证明你猜测的等式.