如图,已知AB是⊙O的直径,CD是⊙O的切线,C为切点,连接AC,过点A作AD⊥CD于点D,交⊙O于点E.(Ⅰ)证明:∠AOC=2∠ACD;(Ⅱ)证明:AB•CD=AC•CE.
某公园准备建一个摩天轮,摩天轮的外围是一个周长为米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连.经预算,摩天轮上的每个座位与支点相连的钢管的费用为元/根,且当两相邻的座位之间的圆弧长为米时,相邻两座位之间的钢管和其中一个座位的总费用为元.假设座位等距离分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为元.(1)试写出关于的函数关系式,并写出定义域;(2)当米时,试确定座位的个数,使得总造价最低?
已知满足,, (1)求 ; (2)求证:是等比数列;并求出的表达式.
设是公差不为0的等差数列的前项和,已知,且成等比数列;(1)求数列的通项公式;(2)求数列的前项和。
在△中,角所对的边分别为、、,若、是方程的两根,且;(1)求角的大小;(2)求边的长度;(3)求的面积。
(1)已知,求的值;(2)已知都是锐角,,求的值.