(本题满分13分)已知函数,(a、b为常数).(1)求函数在点(1,)处的切线方程;(2)当函数g(x)在x=2处取得极值-2.求函数的解析式;(3)当时,设,若函数在定义域上存在单调减区间,求实数b的取值范围;
△ABC中,BC=7,AB=3,且=. (1)求AC的长; (2)求∠A的大小.
已知函数 (1)求在点处的切线方程; (2)若存在,使成立,求的取值范围; (3)当时,恒成立,求的取值范围.
已知数列的前项和和通项满足数列中, (1)求数列,的通项公式; (2)数列满足是否存在正整数,使得时恒成立?若存在,求的最小值;若不存在,试说明理由.
如图,为圆的直径,点、在圆上,,矩形所在的平面和圆所在的平面互相垂直,且,. (1)设的中点为,求证:平面; (2)设平面将几何体分成的两个锥体的体积分别为,,求.
已知等差数列的前项和为, (1)求数列的通项公式与前项和; (2)设求证:数列中任意不同的三项都不可能成为等比数列.