(本题满分12分)某种有奖销售的小食品,袋内印有“免费赠送一袋”或“谢谢品尝”字样,购买一袋若其袋内印有“免费赠送一袋”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一袋该食品。(1)求三位同学都没有中奖的概率; (2)求三位同学中至少有两位没有中奖的概率.
已知等差数列{a n}的首项a 1=1,公差d>0,且其第二项、第五项、第十四项分别是等比数列{b n}的第二、三、四项. (1)求数列{a n}与{b n}的通项公式; (2)令数列{c n}满足:c n= ,求数列{c n}的前101项之和T 101; (3)设数列{c n}对任意n∈N*,均有 + +…+ =a n +1成立,求c 1+c 2+…+c 2012的值.
已知A(0,3)、B(-1,0)、C(3,0),求D点的坐标,使四边形ABCD为直角梯形(A、B、C、D按逆时针方向排列).
在中,分别是角的对边长.已知a=2,.(1)若,求的值; (2)若的面积,求,的值.
(1)解不等式: (见课本71页)(2)已知不等式对一切实数恒成立,求实数的取值范围.
某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;(Ⅱ)求,的值;(Ⅲ)求数学期望ξ.