选修4-4: 坐标系与参数方程 已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(Ⅰ)求曲线的直角坐标方程和直线的普通方程;(Ⅱ)设点,若直线与曲线交于两点,且,求实数的值.
(本小题满分10分)选修4-4:坐标系与参数方程 已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为. (Ⅰ)求圆的直角坐标方程; (Ⅱ)设,直线与圆相交于点,求.
(本小题满分10分)选修4-1 :几何证明选讲 如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2 = EF·EC. (Ⅰ)求证:CE·EB = EF·EP; (Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的长.
(本小题满分12分)已知函数,其中为自然对数的底数. (Ⅰ)求曲线在点处的切线方程; (Ⅱ)若对任意,不等式恒成立,求实数的取值范围; (Ⅲ)试探究当时,方程解的个数,并说明理由.
(本小题满分12分)已知椭圆的一个顶点坐标为B(0,1),且点在上. (Ⅰ)求椭圆的方程; (Ⅱ)若直线与椭圆交于M,N且,求证:为定值.
(本小题满分12分)已知四棱锥中,底面是直角梯形, 平面平面R、S分别是棱AB、PC的中点, (Ⅰ)求证:平面平面 (Ⅱ)求证:平面 (Ⅲ)若点在线段上,且平面求三棱锥的体积.