南昌三中高三年级举行投篮比赛,比赛规则如下:每次投篮投中一次得分,未中扣分,每位同学原始积分均为分,当累积得分少于或等于分则停止投篮,否则继续,每位同学最多投篮次.且规定总共投中次的同学分别为一、二、三等奖,奖金分别为元、元、元.某班甲、乙、丙同学相约参加此活动,他们每次投篮命中的概率均为,且互不影响.(1)求甲同学能获奖的概率;(2)记甲、乙、丙三位同学获得奖金总数为,求的期望.
已知直线,圆. (Ⅰ)证明:对任意,直线与圆恒有两个公共点. (Ⅱ)过圆心作于点,当变化时,求点的轨迹的方程. (Ⅲ)直线与点的轨迹交于点,与圆交于点,是否存在的值,使得?若存在,试求出的值;若不存在,请说明理由.
某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人. (Ⅰ)求n的值; (Ⅱ)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率; (Ⅲ)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数,并按如右所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
(本小题满分13分)某同学大学毕业后在一家公司上班,工作年限和年收入(万元),有以下的统计数据:
(Ⅰ)请画出上表数据的散点图; (Ⅱ)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (Ⅲ)请你估计该同学第8年的年收入约是多少? (参考公式:)
(本小题满分13分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
(Ⅰ)试确定的值,并写出该样本的众数和中位数(不必写出计算过程); (Ⅱ)完成相应的频率分布直方图. (Ⅲ)求出样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.
(本小题满分13分) (Ⅰ)已知扇形的面积为,弧长为,求该扇形的圆心角(用弧度制表示); (Ⅱ)在平面直角坐标系中,角的终边在直线上,求的值.