已知直线,圆.(Ⅰ)证明:对任意,直线与圆恒有两个公共点.(Ⅱ)过圆心作于点,当变化时,求点的轨迹的方程.(Ⅲ)直线与点的轨迹交于点,与圆交于点,是否存在的值,使得?若存在,试求出的值;若不存在,请说明理由.
某校学生会有高一年级6人、高二年级5人、高三年级4人组成,(1)选其中一人为校学生会主席,则不同的选有多少种;(2)从3个年级中各选一个人出席一个会议,不同的选法有多少种;(3)选不同年级的两人参加市里组织的活动,则不同的选法为多少种
已知a,b都是正数,求证:。
(本小题满分12分)椭圆与直线相交于、两点,且(为坐标原点).(Ⅰ)求证:等于定值;(Ⅱ)当椭圆的离心率时,求椭圆长轴长的取值范围.
(本小题满分12分)已知:(1)设的一个极值点。求在区间上的最大值和最小值;(2)若在区间上不是单调函数,求的取值范围。
(本小题满分12分)已知三棱柱中,各棱长均为2,平面⊥平 面,.(1)求证:⊥平面;(2)求二面角的大小;