(本小题满分14分)如图,2015年春节,摄影爱好者在某公园处,发现正前方处有一立柱,测得立柱顶端的仰角和立柱底部的俯角均为,已知的身高约为米(将眼睛距地面的距离按米处理)(1)求摄影者到立柱的水平距离和立柱的高度;(2)立柱的顶端有一长2米的彩杆绕中点在与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
已知集合A={|≤+3},B={|<-1或>5}. (1) 若;(2) 若,求的取值范围.
求下列各式的值:(1)(2)
已知函数,且函数是上的增函数。 (1)求的取值范围; (2)若对任意的,都有(e是自然对数的底),求满足条件的最大整数的值。
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求的标准方程; (Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由。
2011年深圳大运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表: 甲系列:
乙系列:
现该运动员最后一个出场,其之前运动员的最高得分为118分。 (I)若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率; (II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX