(本小题满分14分)如图,2015年春节,摄影爱好者在某公园处,发现正前方处有一立柱,测得立柱顶端的仰角和立柱底部的俯角均为,已知的身高约为米(将眼睛距地面的距离按米处理)(1)求摄影者到立柱的水平距离和立柱的高度;(2)立柱的顶端有一长2米的彩杆绕中点在与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
如图,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延长线上一点,FP=t.过A、B、P三点的平面交FD于M,交FE于N.(1)求证:MN∥平面CDE;(2)当平面PAB⊥平面CDE时,求t的值.
如图,正方形ABCD和三角形ACE所在的平面互相垂直.EF∥BD,AB=EF.求证:(1)BF∥平面ACE;(2)BF⊥BD.
在如图所示的多面体中,已知正三棱柱ABCA1B1C1的所有棱长均为2,四边形ABDC是菱形.(1)求证:平面ADC1⊥平面BCC1B1;(2)求该多面体的体积.
如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在,请说明理由.
如图①,在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点.如图②,将△ABE沿AE折起,使二面角BAEC成直二面角,连结BC、BD,F是CD的中点,P是棱BC的中点.求证:图①图②(1)AE⊥BD;(2)平面PEF⊥平面AECD.