(本小题满分14分)如图,2015年春节,摄影爱好者在某公园处,发现正前方处有一立柱,测得立柱顶端的仰角和立柱底部的俯角均为,已知的身高约为米(将眼睛距地面的距离按米处理)(1)求摄影者到立柱的水平距离和立柱的高度;(2)立柱的顶端有一长2米的彩杆绕中点在与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
如图,已知抛物线,点是x轴上的一点,经过点且斜率为1的直线与抛物线相交于两点. (1)求证线段的中点在一条定直线上,并求出该直线方程; (2)若(O为坐标原点),求的值.
如图,在四棱锥中,底面是菱形,,⊥平面,,点分别为和中点. (1)求证:直线平面; (2)求与平面所成角的正弦值.
已知公差不为0的等差数列的前项和为,且成等比数列。 (1)求数列的通项公式; (2)设,数列的最小项是第几项,并求出该项的值.
△中,角的对边分别为,且. (1)求角的大小; (2)若,求△的面积.
(本小题满分9分)设,, (Ⅰ)若在上有两个不等实根,求的取值范围. (Ⅱ)若对任意的,存在,都有成立,求实数的取值范围.