据某市车管部门统计,2008年底全市汽车拥有量为150万辆,而截止到2010年底,全市的汽车拥有量已达216万辆,假定汽车拥有量年平均增长率保持不变.(1)、求2009年底该市汽车拥有量;(2)、如果不加控制,该市2012年底汽车拥有量将达多少万辆?
小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.
(1)计算:|-5|+x2-1; (2)化简:a(2-a)+(a+1)(a-1).
如图,在每一个四边形ABCD中,均有AD//BC,CD⊥BC∠ABC=60°,AD=8,BC=12. (1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为__________; (2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值; (3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时 cos∠BPC的值;若不存在,请说明理由。
在平面直角坐标系中,抛物线y=x+5x+4的顶点为M,与x轴交于A、B两点与y轴交于C点。 (1)求点A、B、C的坐标; (2)求抛物线y=x+5x+4关于坐标原点O对称的抛物线的函数表达式; (3)设(2)中所求抛物线的顶点为,与x轴交于、两点,与y轴交于点,在以A、B、C、M、、、、、这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积。
如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E。 (1)求证:∠BAD=∠E; (2)若⊙O的半径为5,AC=8,求BE的长。