如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732)
下面的计算对不对?如果不对,应怎样改正? (1)3a2·4a3=7a5;(2)2x3·3x4=5x12;(3)3m2·(-5m2)=-15m2.
已知⊙与⊙相交于、两点,点在⊙上,为⊙上一点(不与,,重合),直线与⊙交于另一点。 (1)如图(1),若是⊙的直径,求证:; (2)如图(2),若是⊙外一点,求证:; (3)如图(3),若是⊙内一点,判断(2)中的结论是否成立。
有两个全等的等腰直角三角板ABC和EFG其直角边长均为6(如图1所示)叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转,旋转角满足0<º<90º,四边形CHGK是旋转过程中两块三角板的重叠部分(如图2). (1)在上述旋转过程中,①BH与CK有怎样的数量关系?②四边形CHGK的面积是否发生变化?并证明你发现的结论. (2)如图,连接KH,在上述旋转过程中,是否存在某一位置使△GKH的面积恰好等于△ABC面积的?若存在,请求出此时KC的长度;若不存在,请说明理由.
仙游永辉超市经销度尾文旦柚,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量减少20千克,现该超市要保证每天盈利6000元,同时又要使顾客最实惠,那么每千克应涨价多少元?
如图,C是射线OE上的一动点,AB是过点C的弦,直线DA与OE的交点为D,现有三个论断: (1)DA是⊙O的切线;(2)DA=DC;(3)OD⊥OB。 请以其中两个为条件,另一个为结论,写出一个真命题,用“○○○”表示。并证明。 我的是:。