(本小题13分)已知A为椭圆上的点,过A作ABx轴,垂足为B,延长BA到C使得=。(1) 求点C的轨迹方程;(2)直线l过点D (2,3)且与点C的轨迹只有一个交点,求l 的方程。
在极坐标系中,过曲线外的一点(其中为锐角)作平行于的直线与曲线分别交于. (1)写出曲线和直线的普通方程(以极点为原点,极轴为轴的正半轴建系); (2)若成等比数列,求的值.
如图,已知切⊙于点,割线交⊙于两点,∠的平分线和分别交于点. 求证:(1);(2)
已知函数(). (1)若为的极值点,求实数的值; (2)若在上不是单调函数,求实数的取值范围; (3)当时,方程有实根,求实数的最大值.
已知抛物线:和点,若抛物线上存在不同两点、满足. (1)求实数的取值范围; (2)当时,抛物线上是否存在异于、的点,使得经过、、三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.
如图,四棱锥中,平面,与底面所成的角为,底面为直角梯形,, (1)求证:平面平面; (2)在线段上是否存在点,使与平面所成的角为?若存在,确定点的位置;若不存在,说明理由.