已知椭圆的上顶点为,直线交椭圆于两点,设直线的斜率分别为.(1)若时,求的值;(2)若时,证明直线过定点.
(本小题满分12分) 如图,A,B,C是三个汽车站,AC,BE是直线型公路.已知AB=120 km,∠BAC=75°,∠ABC=45°.有一辆车(称甲车)以每小时96(km)的速度往返于车站A,C之间,到达车站后停留10分钟;另有一辆车(称乙车)以每小时120(km)的速度从车站B开往另一个城市E,途经车站C,并在车站C也停留10分钟.已知早上8点时甲车从车站A、乙车从车站B同时开出.(1)计算A,C两站距离,及B,C两站距离;(2)若甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C处利用停留时间交换.(3)求10点时甲、乙两车的距离.(可能用到的参考数据:,,,)
(本小题满分12分)某人以12.1万元购买了一辆汽车用于上班,每年用于保险费和汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少)。
(本小题满分12分)函数,且
(本小题满分12分)已知函数f(x)=lg(x2 + a x + 1)的定义域为R ,在此条件下,解关于x的不等式 x2-2x + a(2-a)< 0 .
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos = , · = 6. (1)求△ABC的面积; (2)若c=2,求a的值