(本小题12分)如图:四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(1)证明:无论点E在BC边的何处,都有PE⊥AF;(2)当BE等于何值时,PA与平面PDE所成角的大小为45°.
已知,当为何值时,平行时它们是同向还是反向?
如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=(2),BC=2,且AE=AH=CF=CG,设AE=,绿地面积为. (1)写出关于的函数关系式,指出这个函数的定义域. (2)当AE为何值时,绿地面积最大?
已知函数是常数且在区间[—,0]上有,试求a、b的值。
设全集U=R,集合 (1)求; (2)求().
如图,已知点P是三角形ABC外一点,且底面,点,分别在棱上,且。。 (1)求证:平面; (2)当为的中点时,求与平面所成的角的大小; (3)是否存在点使得二面角为直二面角?并说明理由.