已知等差数列{},公差,,且成等比数列.(I)求{}的通项公式;(II)设,求证:.
设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC. (Ⅰ)求角A的大小; (Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.
设a为实数,函数f(x)=ex﹣2x+2a,x∈R. (1)求f(x)的单调区间及极值; (2)求证:当a>ln2﹣1且x>0时,ex>x2﹣2ax+1.
在正项数列{an}中,a1=1,点An()在曲线y2﹣x2=1上,数列{bn}中,点(bn,Tn)在直线y=﹣x+1上,其中Tn是数列{bn}的前n项和. (1)求数列{an},{bn}的通项公式an,bn; (2)若cn=an•bn,数列{cn}的前n项和Sn.
在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣. (Ⅰ)求a和sinC的值; (Ⅱ)求cos(2A+)的值.
已知函数f(x)=ax3+bx+c在x=2处取得极值为c﹣16. (1)求a、b的值; (2)若f(x)有极大值28,求f(x)在[﹣3,3]上的最大值.