先化简(1+)÷,再选择一个恰当的x值代人并求值.
如图,折叠矩形的一边AD,使点D落在BC边的点F处,AB=8cm,BC=10cm,EC= cm.
观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …… 以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据上述各式反映的规律填空,使式子成为“数字对称等式”: ①52× = ×25; ② ×396=693× . (2)设这类等式左边两位数的十位数字为,个位数字为,且2≤≤9,写出表示“数字对称等式”一般规律的式子(含、),并说明理由.
读一读: 式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和. 由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为,这里“”是求和符号.例如:“1+3+5+7+9+…+99”(即从1开始的100以内连续奇数的和)可表示为;又如“13+23+33+43+53+63+73+83+93+103”可表示为. 同学们,通过对以上材料的阅读,请解答下列问题: (1)“2+4+6+8+10+…+100”(即从2开始的100以内的连续偶数的和)用求和符号可表示为 . (2)计算:的值
一辆货车从超市出发,向东走了3千米到达小彬家,继续向东走了1.5千米到达小颖家,然后向西走了9.5千米到达小明家,最后回到超市. (1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明家,小彬家和小颖家的位置. (2)小明家距小彬家多远? (3)如果货车耗油量是每千米0.02升,那么在上述过程中共耗油多少升?
先化简,后求值:(1)先化简,后求值:,其中(2)求的值,其中负数的绝对值是2,正数的倒数是它的本身,负数的平方等于9;