先化简(1+)÷,再选择一个恰当的x值代人并求值.
如图,一条公路的转弯处是一段圆弧.(1)作出所在圆的圆心O;(用直尺和圆规作图,保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.
已知,△ABC在直角坐标平面内,三个顶点的坐标分别为A(-2, 2)、B(-1,0)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC关于y轴的轴对称图形△A1B1C1;(2)以点O为位似中心,在网格内画出所有符合条件的△A2B2C2,使△A2B2C2与△A1B1C1位似,且位似比为2:1;(3)求△A1B1C1与△A2B2C2的面积比.
如图,已知点D是△ABC的边AC上的一点,连接BD.∠ABD=∠C,AB=6,AD=4.(1)求证:△ABD∽△ACB;(2)求线段CD的长.
解方程 (1)(x-2)2=9; (2)3x2-1=2 x(配方法); (3)x2+3 x+1=0; (4)(x+1)2-6(x+1)+5=0.
在平面直角坐标系xOy中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙ O′交x轴于D点,过点D作DF⊥AE于F.(1)求OA,OC的长; (2)求证:DF为⊙ O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.