如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
云南某蔬菜有限公司一年四季都有大量新鲜蔬菜销往全国各地,已成为我省经济发展的重要项目。近年来它的蔬菜产值不断增加,2009年蔬菜的产值是640万元,2011年产值达到1000万元。这两年的蔬菜产值增长率相同,求蔬菜产值的年平均增长率是多少?若2012年蔬菜产值继续稳步增长(即年增长率与前两年的年增长率相同),那么请你估计2012年该公司的蔬菜产值将达到多少万元?
如图,在△ABC中,AC="BC," AB=6,O为AB的中点,且以O为圆心的半圆与AC,BC分别相切于点D,E;求半圆O的半径;求图中阴影部分的面积.
先化简,再求值:,其中
如图,正方形网格中的每个小正方形的边长都是1,在平面直角坐标系中,已知,ΔABO的三个顶点的坐标分别为A(2,2),B(0,4),O(0,0)画出ΔABO绕点O逆时针旋转900后得到的Δ0并写出点A,B的坐标;求旋转过程中动点B所经过的路径长。
解方程:x2-4x-3=0