如图,BD是的平分线,AB=AC,点P在BD上,PM⊥AD于点M,PN⊥CD于点N,求证:PM=PN
省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对 他们进行了六次测试,测试成绩如下表(单位:环):
(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环; (2)分别计算甲、乙六次测试成绩的方差; (3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由. (计算方差的公式:s2=[])
已知实数a、b满足ab=1,a+b=2,求代数式a2b+ab2的值.
解不等式组
已知二次函数的图象如图. (1)求它的对称轴与轴交点D的坐标; (2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴,轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式; (3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连结AE、AD、DC. (1)求证:D是 弧AE 的中点; (2)求证:∠DAO =∠B+∠BAD; (3)若 ,且AC=4,求CF的长.