甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图.根据图象解决下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你根据下列情形,分别列出关于行驶时间x的方程或不等式(不化简,也不求解):① 甲在乙的前面;② 甲与乙相遇;③ 甲在乙后面.
如图,在正方形 ABCD 的外侧,作等边三角形 ADE ,连接 BE , CE .
(1)求证: ΔBAE ≅ ΔCDE ;
(2)求 ∠ AEB 的度数.
化简: ( a 2 a - 1 - a - 1 ) ÷ 2 a a 2 - 1 .
计算: 2 cos 45 ° + ( π - 2020 ) 0 + | 2 - 2 | .
如图,抛物线 y = - x 2 + bx + 5 与 x 轴交于 A , B 两点.
(1)若过点 C 的直线 x = 2 是抛物线的对称轴.
①求抛物线的解析式;
②对称轴上是否存在一点 P ,使点 B 关于直线 OP 的对称点 B ' 恰好落在对称轴上.若存在,请求出点 P 的坐标;若不存在,请说明理由.
(2)当 b ⩾ 4 , 0 ⩽ x ⩽ 2 时,函数值 y 的最大值满足 3 ⩽ y ⩽ 15 ,求 b 的取值范围.
阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.
(1)特例感知:如图(一 ) ,已知边长为2的等边 ΔABC 的重心为点 O ,求 ΔOBC 与 ΔABC 的面积.
(2)性质探究:如图(二 ) ,已知 ΔABC 的重心为点 O ,请判断 OD OA 、 S ΔOBC S ΔABC 是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.
(3)性质应用:如图(三 ) ,在正方形 ABCD 中,点 E 是 CD 的中点,连接 BE 交对角线 AC 于点 M .
①若正方形 ABCD 的边长为4,求 EM 的长度;
②若 S ΔCME = 1 ,求正方形 ABCD 的面积.