有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣2,﹣3和﹣4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=﹣x﹣2上的概率.
(本题满分8分)先化简分式:-÷∙,再从-3、、2、-2 中选一个你喜欢的数作为a的值代入求值.
如图,已知在直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F. (1)求经过A、B、C三点的抛物线的解析式; (2)当BE经过(1)中抛物线的顶点时,求CF的长; (3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.
如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D. (1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法); (2)求证:BC是过A,D,C三点的圆的切线; (3)若过A,D,C三点的圆的半径为3,则线段BC上是否存在一点P,使得以P,D, B为顶点的三角形与△BCO相似?若存在,求出DP的长;若不存在,请说明理由.
“六一”前夕,某玩具经销商用去2350元购进A、B、C三种新型的电动共50套,并且的三种都不少于10套,设A种x套,B种y套,三种电动的进价和售价如表所示
(1)用含x、y的代数式表示C种的套数; (2)求y与x之间的函数关系式; (3)假设所购进的电动玩具全部售出,且在购销这种的过程中需要另外支出各种费用200.求出利润P最大是多少元.
如图,在凯里市某广场上空飘着一只汽球P,A、B是地面上相距90米的两点,它们分别在汽球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求汽球P的高度.(精确到0.1米,=1.732)