如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.
如图,AB是⊙O的直径,弦DE垂直平分半径OA,垂足为C,弦DF与半径OB相交于点P.连结EF,EO .若DE=,∠DPA=45°求⊙O的半径;求图中阴影部分的面积.(结果保留两个有效数字)
设函数(为任意实数)求证:不论为何值,该函数图象都过点(0,2)和(-2,0);若该函数图象与轴只有一个交点,求的值.
已知:如图,在⊙O中,AB=CD. 求证:∠ABD=∠CDB
如图,一次函数的图象与反比例函数的图象交于、两点.利用图中条件,求反比例函数和一次函数的解析式;根据图象直接写出使反比例函数的值大于一次函数的值的的取值范围.
已知抛物线的解析式为求抛物线的顶点坐标;求出抛物线与x轴的交点坐标;当x取何值时y>0?