如图所示,抛物线y=-x2+mx+n经过点A(1,0)和点C(4,0),与y轴交于点B。(1)求抛物线所对应的解析式。(2)连接直线BC,抛物线的对称轴与BC交于点E,F为抛物线的顶点,求四边形AECF的面积。
为了了解学校图书馆上个月借阅情况,管理老师从学生对艺术、经济、科普及生活四类图书借阅情况进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:
(1)上个月借阅图书的学生有多少人?扇形统计图中“艺术”部分的圆心角度数是多少?
(2)把条形统计图补充完整;
(3)从借阅情况分析,如果要添置这四类图书300册,请你估算“科普”类图书应添置多少册合适?
如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.
(1)△A1B1C1与△ABC的位似比是 ;
(2)画出△A1B1C1关于y轴对称的△A2B2C2;
(3)设点P(a,b)为△ABC内一点,则依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标是 .
化简: a a - 2 - 4 a 2 - 2 a ÷ a + 2 a .
正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.
(1)建立适当的平面直角坐标系,
①直接写出O、P、A三点坐标;
②求抛物线L的解析式;
(2)求△OAE与△OCE面积之和的最大值.
如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.
(1)求证:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半径.