如图,△ABC是⊙O的内接三角形,∠BAC=60°。设⊙O的半径为2,求弧BC的长。
在下面过程中的横线上填空,并在括号内注明理由。如图,已知∠B =∠C,AD = AE,说明DB与EC相等。解: 在△ABE和△ACD中 ∠B = _______ (已知)_______ = _______( )AD =" AE" (已知)∴ △ABE ≌△ACD ( ) ∴ AB = AC( ) 又∵ AD = AE∴ AB-AD=AC-AE,即 DB = EC.
解方程组:
如图,Rt△ABC中,AC=BC=8,∠ACB=90º,直角边AC在x轴上,B点在第二象限,A(2,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形B1C1F1E1与△AEF重叠的面积为S. (1)求折痕EF的长; (2)直接写出S与t的函数关系式及自变量t的取 值范围. (3)若四边形BCFE平移时,另有一动点H与四边形BCFE同时出发,以每秒个单位长度从点A沿射线AC运动,试求出当t为何值时,△HE1E为等腰三角形?
某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为 (且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式 为(且t为整数). 下面我们就来研究销售这种商品的有关问题:(1)分析上表中的数据,确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程. 公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
如图,△AGB中,以边AG、AB为边分别作正方形AEFG、正方形ABCD,线段EB和GD相交于点H, tan∠AGB=,点G、A、C在同一条直线上.(1)求证:EB⊥GD;(2)若∠AG=,求BE的长.