已知:在△ABC和△DEF中,∠A=50°,∠E+∠F=100°,将△DEF如图摆放,使得∠D的两条边分别经过点B和点C.(1)当将△DEF如图1摆放时,则∠ABD+∠ACD= 度;(2)当将△DEF如图2摆放时,请求出∠ABD+∠ACD的度数,并说明理由;(3)能否将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB?直接写出结论_______. (填“能”或“不能”)
如图,点M(﹣3,m)是一次函数与反比例函数()的图象的一个交点. (1)求反比例函数表达式; (2)点P是x轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称. ①当a=4时,求△ABC′的面积; ②当a的值为时,△AMC与△AMC′的面积相等.
某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).
活动1: 在一只不透明的口袋中装有标号为1,2,3的3个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙→甲→乙的顺序依次从袋中各摸出一个球(不放回),摸到1号球胜出,计算甲胜出的概率.(注:丙→甲→乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球) 活动2: 在一只不透明的口袋中装有标号为1,2,3,4的4个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序:→→,他们按这个顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则第一个摸球的同学胜出的概率等于,最后一个摸球的同学胜出的概率等于. 猜想: 在一只不透明的口袋中装有标号为1,2,3,…,n(n为正整数)的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球(不放回),摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系. 你还能得到什么活动经验?(写出一个即可)
某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图. (1)分别求该商场这段时间内A,B两种品牌冰箱月销售量的中位数和方差; (2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性.
(1)解方程:; (2)解不等式组:.