已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若、R且,证明:函数必有局部对称点;(2)若函数在区间内有局部对称点,求实数的取值范围;(3)若函数在R上有局部对称点,求实数的取值范围.
已知是四边形所在平面外一点,四边形是的菱形,侧面 为正三角形,且平面平面. (1)若为边的中点,求证:平面. (2)求证:.
如图所示,在三棱柱中,点为棱的中点. (1)求证:. (2)若三棱柱为直三棱柱,且各棱长均为,求异面直线与所成的角的余弦值.
一个圆锥,它的底面直径和高均为. (1)求这个圆锥的表面积和体积. (2)在该圆锥内作一内接圆柱,当圆柱的底面半径和高分别为多少时,它的侧面积最大?最大值是多少?
不等式,当时恒成立.求的取值范围.
在直角坐标系中,直线的参数方程为(为参数).在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为. (1)求圆的直角坐标方程; (2)设圆与直线交于点,若点的坐标为,求