列方程解应用题(1)整理一批图书,如果一个人做要40h完成,现计划由一部分人先做4h,然后增加2人与他们一起做8 h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?(2)小颖晚上19点到距家6千米的市少年宫参加“中国梦,我的梦”演讲比赛,比赛开始时间是晚上19点30分。她先以50米/分钟的速度步行走了10分钟,然后乘出租车提前10分钟到达会场,已知小颖所走的市区道路汽车限速为40千米/时,请你计算出租车司机是否超速行驶?(假设出租车为匀速行驶,其它时间忽略不计)
补全下列各题解题过程. 如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC. 证明:∵∠1=∠2(已知) ∠2=∠3∠1=∠4 () ∴∠3=∠4( 等量代换) ∴_DB__∥_____ ( ) ∴∠C=∠ABD ( ) ∵∠C=∠D ( 已 知 ) ∴∠D=∠ABD( ) ∴DF∥AC( )
(1)计算:(2)解方程组
书生中学小卖部工作人员到路桥批发部选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量(个)与甲品牌文具盒数量(个)之间的函数关系如图所示,当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7 200元. (1)根据图象,求与之间的函数关系式; (2)求甲、乙两种品牌的文具盒进货价; (3)若小卖部每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学校后勤部决定,准备用不超过6 300元购进甲、乙两种品牌的文具盒,且这两种文具盒全部售出后获利不低于1 795元,问小卖部工作人员有几种进货方案?哪种进货方案能使获利最大?最大获利为多少元?
如图,是一张放在平面直角坐标系中的矩形纸片,为原点,点在轴的正半轴上,,在上取一点,将纸片沿翻折,使点落在边上的点处,求直线的解析式.
如图,已知的周长为,,. (1)判断的形状; (2)若为边上的中线,,的平分线交于点,交于点,连结.求证:.