列方程解应用题(1)整理一批图书,如果一个人做要40h完成,现计划由一部分人先做4h,然后增加2人与他们一起做8 h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?(2)小颖晚上19点到距家6千米的市少年宫参加“中国梦,我的梦”演讲比赛,比赛开始时间是晚上19点30分。她先以50米/分钟的速度步行走了10分钟,然后乘出租车提前10分钟到达会场,已知小颖所走的市区道路汽车限速为40千米/时,请你计算出租车司机是否超速行驶?(假设出租车为匀速行驶,其它时间忽略不计)
先化简,再求值:,其中a=.
如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O) (1)求此抛物线的解析式. (2)过点P作CB所在直线的垂线,垂足为点R, ①求证:PF=PR; ②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由; ③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.
如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<)秒.解答如下问题: (1)当t为何值时,PQ∥BO? (2)设△AQP的面积为S, ①求S与t之间的函数关系式,并求出S的最大值; ②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2﹣x1,y2﹣y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.
如图,AB是⊙O的直径,动弦CD垂直AB于点E,过点B作直线BF∥CD交AD的延长线于点F,若AB=10cm. (1)求证:BF是⊙O的切线. (2)若AD=8cm,求BE的长. (3)若四边形CBFD为平行四边形,则四边形ACBD为何种四边形?并说明理由.
在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀. (1)若从中任取一球,球上的数字为偶数的概率为多少? (2)若从中任取一球(不放回),再从中任取一球,请用画树状图或列表格的方法求出两个球上的数字之和为偶数的概率. (3)若设计一种游戏方案:从中任取两球,两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?说明理由.