如图:点A、B、C是数轴上三点,其中点C是线段AB的中点,点O表示的是数轴的原点,线段AC比线段OA长1个单位,点B表示的有理数是17,求点C表示的有理数
如图,在长为80米,宽为60米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为4524米2,则道路的宽应为多少米?
如图在Rt△ABC中,∠ACB=90°,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,求证: AC=EF
方程组
如图,已知抛物线与x轴交于A,B两点,对称轴为直线,直线AD交抛物线于点D(2,3).(1)求抛物线的解析式;(2)已知点M为第三象限内抛物线上的一动点,当点M在什么位置时四边形AMCO的面积最大?并求出最大值;(3)当四边形AMCO面积最大时,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线BC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.
李倩同学在学习中善于总结解决问题的方法,并把总结出的结果灵活运用到做题中.例如,总结出“图形中有角平分线+平行线,通常会出现等腰三角形”后,老师出了这样一道题:(1)如图1,在矩形ABCD中,F是BC边上的一点,AE平分∠FAD,与CD交于点E,与BC的延长线交于点M,E是CD的中点,请问 AF=FC+AD成立吗?(2)若把矩形ABCD变成平行四边形ABCD(如图2),其它条件不变,你的结论还正确吗?说明理由.