若函数,是的导函数,则函数的最大值是
极坐标方程为的直线与轴的交点为,与椭圆 (为参数)交于求.
(本小题满分10分)如图,AB是⊙O的直径 ,AC是弦 ,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.OE交AD于点F.(1)求证:DE是⊙O的切线;(2)若,求的值.
(本小题满分12分)已知数列各项均不为0,其前项和为,且对任意都有(为大于1的常数),记.(1) 求;(2) 试比较与的大小();(3) 求证:
(本小题满分12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,,设为椭圆与 轴负半轴的交点,且,求实数的取值范围.
(本小题满分12分)已知f(x)=(x∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a的值组成的集合A;(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.