(本小题满分10分)等比数列 中, ,且 是 和 的等差中项,若.(1)求数列 的通项公式;(2)若数列 满足 ,求数列的前项和;
设函数f(x)=lg的定义域为A,若命题p:3∈A与q:5∈A有且只有一个为真命题,求实数a的取值范围.
分别指出下列各组命题构成的“p∧q”“p∨q”“¬p”形式的命题的真假. (1)p:6<6.q:6=6; (2)p:梯形的对角线相等.q:梯形的对角线互相平分; (3)p:函数y=x2+x+2的图象与x轴没有公共点.q:不等式x2+x+2<0无解; (4)p:函数y=cosx是周期函数.q:函数y=cosx是奇函数.
指出下列命题的形式及其构成. (1)若α是一个三角形的最小内角,则α不大于60°; (2)一个内角为90°,另一个内角为45°的三角形是等腰直角三角形; (3)有一个内角为60°的三角形是正三角形或直角三角形.
一只红蚂蚁与一只黑蚂蚁在一个单位圆(半径为1的圆)上爬动,若两只蚂蚁均从点A(1,0)同时逆时针匀速爬动,若红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0°<α<β<180°),如果两只蚂蚁都在第14秒时回到A点,并且在第2秒时均位于第二象限,求α,β的值.
写出如图所示阴影部分的角α的范围.