已知圆 经过椭圆Γ∶ 的右焦点F和上顶点B.(1)求椭圆Γ的方程;(2)过原点O的射线l与椭圆Γ在第一象限的交点为Q,与圆C的交点为P,M为OP的中点,求 的最大值.
已知动点P与双曲线的两个焦点F1,F2的距离之和为4. (1)求动点P的轨迹C的方程; (2)若M为曲线C上的动点,以M为圆心,MF2为半径做圆M.若圆M与y轴有两个交点,求点M横坐标的取值范围.
某地兴建一休闲商业广场,欲在如图所示的一块不规则用地规划建成一个矩形的商业楼区,余下作为休闲区域,已知,且AB=BC=2AO=4km,曲线段OC是以O为顶点且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在AB、BC上,且一个顶点落在曲线段OC上,应如何规划才能使矩形商业楼区的用地面积最大?
已知数列的前n项和为,且, (1)求证:是等差数列; (2)求; (3)若
已知矩形ABCD所在平面,PA=AD=,E为线段PD上一点,G为线段PC的中点. (1)当E为PD的中点时,求证: (2)当时,求证:BG//平面AEC.
已知 (1)求的最小值及此时x的取值集合; (2)把的图象向右平移个单位后所得图象关于y轴对称,求m的最小值。