已知圆 经过椭圆Γ∶ 的右焦点F和上顶点B.(1)求椭圆Γ的方程;(2)过原点O的射线l与椭圆Γ在第一象限的交点为Q,与圆C的交点为P,M为OP的中点,求 的最大值.
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
(1)回归分析,并求出y关于x的线性回归方程=bx+a;(2)试预测加工10个零件需要多少时间?
某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
(1)请完成上面的列联表;(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.附:
证明:在复数范围内,方程(为虚数单位)无解.
已知幂函数,且在上单调递增.(1)求实数的值,并写出相应的函数的解析式;(2)若在区间上不单调,求实数的取值范围;(3)试判断是否存在正数,使函数在区间上的值域为若存在,求出的值;若不存在,请说明理由.
已知是的三个内角,向量,且.(1)求角;(2)若,求.