(本小题满分10分)选修4—1:几何证明选讲.如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O交于点M、T(不与A、B重合),DN与圆O相切于点N,连结MC,MB,OT.(1)求证:;(2)若,试求的大小.
经过点且与直线相切的动圆的圆心轨迹为.点、在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点、. (1)求轨迹的方程; (2)证明:; (3)若点到直线的距离等于,且△的面积为20,求直线的方程.
已知函数. (1)若在定义域上为增函数,求实数的取值范围; (2)求函数在区间上的最小值.
在等差数列中,,,记数列的前项和为. (1)求数列的通项公式; (2)是否存在正整数、,且,使得、、成等比数列?若存在,求出所有符合条件的、的值;若不存在,请说明理由.
如图, 在三棱锥中,. (1)求证:平面平面; (2)若,,当三棱锥的体积最大时,求的长.
某单位有、、三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为,,.假定、、、四点在同一平面上. (1)求的大小; (2)求点到直线的距离.