(本小题满分10分)选修4—1:几何证明选讲.如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O交于点M、T(不与A、B重合),DN与圆O相切于点N,连结MC,MB,OT.(1)求证:;(2)若,试求的大小.
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切是圆的方程.
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.(Ⅰ)完成样本的频率分布表;画出频率分布直方图.(Ⅱ)估计成绩在85分以下的学生比例;(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)频率分布表 频率分布直方图
如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E, F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.(Ⅰ)求证:EF//平面PAD;(Ⅱ)求三棱锥C—PBD的体积.
已知公比大于1的等比数列{}满足:++=28,且+2是和的等差中项.(Ⅰ)求数列{}的通项公式;(Ⅱ)若=,求{}的前n项和.
设函数,记的导函数,的导函数,的导函数,…,的导函数,.(1)求;(2)用n表示;(3)设,是否存在使最大?证明你的结论.