如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3。(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由。
如图:在正方形网格中有一个△ABC,请按下列要求进行(只能借助于网格): (1)、请作出△ABC中BC边上的高AE; (2)、作出将△ABC向右平移6格,再向上平移3格后的△DEF; (3)、作一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积。
如图,在△ABC中,点D为BC边上的点,BE平分∠ABC交AD于点E.若∠ABE=15°,∠BAD=40°,求∠ADC的度数。
如图,M是AB的中点,∠C=∠D,∠1=∠2,请说明 AC=BD的理由(填空) 解:M是AB的中点, ∴ AM = ( ) 在中 ∴△≌△() ∴AC=BD()
解下列方程组: (1);(2)
计算:4.7-(-8.9)-7.5+(-6);