某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润;(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式;(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?
在四边形ABCD中,O是边BC上的一点.若 △ O A B ≌ △ O C D ,则点O叫做该四边形的“等形点”.
(1)正方形 “等形点”(填“存在”或“不存在”);
(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD的“等形点”.已知 C D = 4 2 , O A = 5 , B C = 12 ,连接AC,求AC的长;
(3)在四边形EFGH中,EH∥FG.若边FG上的点O是四边形EFGH的“等形点”,求 OF OG 的值.
第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.
(1)八进制数3746换算成十进制数是 ;
(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.
如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.
(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为 ;
(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.
如图,在平面直角坐标系xOy中,一次函数 y = 2 x + b 的图象分别与x轴、y轴交于点A、B,与反比例函数 y = k x (x>0)的图象交于点C,连接OC.已知点B(0,4),△BOC的面积是2.
(1)求b、k的值;
(2)求△AOC的面积.
在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图象关于原点对称;④函数的图象关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.
(1)从盒子A中任意抽出1支签,抽到①的概率是 ;
(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.