如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且D点的横坐标是它的纵坐标的2倍.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
(1)计算:++(-1)0-2sin45° (2)先化简,再求值: ,其中
如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且. (1)求a,b的值; (2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标; ②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立,若存在,请直接写出符合条件的点M的坐标; (3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.
江汉区某中学组织七年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车刚好坐满.已知45座和60座客车的租金分别为220元/辆和300元/辆. (1)设原计划租45座客车x辆,七年级共有学生y人,则y=(用含x的式子表示);若租用60座客车,则y=(用含x的式子表示); (2)七年级共有学生多少人? (3)若同时租用两种型号的客车或只租一种型号的客车,每辆客车恰好坐满并且每个同学都有座位,共有哪几种租车方案?哪种方案更省钱?
如图,在平面直角坐标系中有三个点A(-3,2)、B(﹣5,1)、C(-2,0),P(a,b)是△ABC的边AC上一点,△ABC经平移后得到△A1B1C1,点P的对应点为P1(a+6,b+2). (1)画出平移后的△A1B1C1,写出点A1、C1的坐标; (2)若以A、B、C、D为顶点的四边形为平行四边形,直接写出D点的坐标; (3)求四边形ACC1A1的面积.
如图,在三角形ABC中,点D、F在边BC上,点E在边AB上,点G在边AC上,AD∥EF,∠1+∠FEA=180°. 求证:∠CDG=∠B.