(本小题共13分)已知函数.(1)求的最小正周期和图象的对称轴方程;(2)求在区间上的最大值和最小值.
(本小题满分12分) 设为等比数列,且其满足:.(1)求的值及数列的通项公式;(2)已知数列满足,求数列的前n项和.
(本小题满分12分) 已知数列,且是函数,()的一个极值点.数列中(且). (1)求数列的通项公式; (2)记,当时,数列的前项和为,求使的的最小值; (3)若,证明:()。
(本小题满分12分)已知函数(1)若上是增函数,求的取值范围;(2)若; (3)若
(本小题满分12分)已知数列(I)求的通项公式;(II)由能否为等差数列?若能,求的值;若不能,说明理由。
(本小题满分12分)四川汶川抗震指挥部决定建造一批简易房(房型为长方体状,房高2.5米),前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即:钢板的高均为2.5米,用钢板的长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元.房顶用其它材料建造,每平方米材料费为200元.每套房材料费控制在32000元以内.(1)设房前面墙的长为,两侧墙的长为,所用材料费为,试用表示;(2)简易房面积的最大值是多少?并求当最大时,前面墙的长度应设计为多少米?