(本小题共13分)已知函数.(1)求的最小正周期和图象的对称轴方程;(2)求在区间上的最大值和最小值.
过曲线:外的点作曲线的切线恰有两条,(1)求满足的等量关系;(2)若存在,使成立,求的取值范围.
包含甲在内的甲、乙、丙个人练习传球,设传球次,每人每次只能传一下,首先从甲手中传出,第次仍传给甲,共有多少种不同的方法?为了解决上述问题,设传球次,第次仍传给甲的传球方法种数为;设传球次,第次不传给甲的传球方法种数为.根据以上假设回答下列问题:(1)求出的值;(2)根据你的理解写出与的关系式;(3)求的值及通项公式.
已知函数.(1)求在点处的切线方程;(2)求函数在上的最大值.
已知函数(1)若不等式的解集为或,求的表达式;(2)在(1)的条件下, 当时, 是单调函数, 求实数k的取值范围;(3)设, 且为偶函数, 判断+能否大于零?
设函数 (a>0),且方程(x)-9x=0的两个根分别为1,4.(1)当a=3且曲线y="f" (x)过原点时,求f (x)的解析式;(2)若f (x)在(-∞,+∞)内无极值点,求a的取值范围.