如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.
如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
解方程:.
先化简再求值:,其中.
计算:(结果保留π)
如图,一次函数y=x﹣5分别交x轴、y轴于A、B两点,二次函数y=﹣x2+bx+c的图象经过A、B两点.(1)求二次函数的解析式;(2)设D、E是线段AB上异于A、B的两个动点(E点位于D点上方),DE=.①若点D的横坐标为t,用含t的代数式表示D、E的坐标;②抛物线上是否存在点F,使点F与点D关于x轴对称,如果存在,请求出△AEF的面积;如果不存在,请说明理由.