如图,在Rt△ABC中,∠BAC=90°,AB=AC,点M、N在边BC上.(1)如图1,如果AM=AN,求证:BM=CN;(2)如图2,如果M、N是边BC上任意两点,并满足∠MAN=45°,那么线段BM、MN、NC是否有可能使等式MN2=BM2+NC2成立?如果成立,请证明;如果不成立,请说明理由.
(12分)已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五个点,抛物线y=a(x-1)2+k(a>0)经过其中的三个点.(1)求证:C、E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上;(2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么?(3)求a和k的值.
(8分)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如: 它们的一个相同点:正五边形的各边相等,正六边形的各边也相等. 它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形. 请你再写出它们的两个相同点和不同点: 相同点: ① ; ② . 不同点: ① ; ② .
(8分)在社区全民健身活动中,父子俩参加跳绳比赛.相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?
已知,AB是⊙O的直径,AB=8,点C在⊙O的半径OA上运动,PC⊥AB,垂足为C,PC=5,PT为⊙O的切线,切点为T.⑴如图⑴,当C点运动到O点时,求PT的长;⑵如图⑵,当C点运动到A点时,连结PO、BT,求证:PO∥BT;⑶如图⑶,设,,求与的函数关系式及的最小值.
如图,直线交轴于A点,交轴于B点,过A、B两点的抛物线交轴于另一点C(3,0). ⑴求抛物线的解析式;⑵在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.