一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法,如图,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连接CC′,设AB=a,BC=b,AC=c.请利用四边形BCC′D′的面积证明勾股定理.
如图,在中,,为中点,四边形是平行四边形.求证:四边形是矩形.
已知:如图,、是□的对角线上的两点,. 求证:(1);(2)∥.
如图,矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB、CD的延长线分别交于点E、F. (1)求证:△BOE≌△DOF; (2)当EF与AC满足什么条件时四边形AECF是菱形,并证明你的结论.
已知反比例函数图象过第二象限内的点A(—2,m)AB⊥x轴于B,Rt△AOB面积为3, 若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,—1)。 (1)求反比例函数的解析式及m、n的值; (2)求直线y=ax+b的解析式.
某校举行“爱心传递捐款活动”,动员师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?