在一块边长为m的正方形土地中,修建了一个边长为m的正方形养鱼池,问:剩余部分的面积是多少?
看图填空: 已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.求证:AD平分∠BAC. 证明:∵AD⊥BC,EF⊥BC(已知) ∴∠ADC=90°,∠EFC=90°(垂线的定义) ∴ = ∥ ∴∠1= ∠2= ∵∠1=∠2(已知) ∴= ∴AD平分∠BAC(角平分线定义)
解不等式:1-<
解方程组
因式分解:2m2n-8mn+8n.
计算:(1)(a2)3÷(-a)2;(2)(a+2b)(a+b)-3a(a+b).