(本小题满分12分)已知(1)求函数的最小正周期及单调递增区间.(2)当时,方程有实数解,求实数的取值范围.
(本小题满分14分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费基本费超额费定额损耗费,且有如下三条规定:① 若每月用水量不超过最低限量立方米时,只付基本费9元和每户每月定额损耗费元;② 若每月用水量超过立方米时,除了付基本费和定额损耗费外,超过部分每立方米付元的超额费;③ 每户每月的定额损耗费不超过5元.(1) 求每户每月水费(元)与月用水量(立方米)的函数关系;(2) 该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:
试分析该家庭今年一、二、三各月份的用水量是否超过最低限量,并求的值.
(本小题满分14分)如图,四边形为矩形,平面,,平面于点,且点在上,点是线段的中点。(1)求证:;(2)求三棱锥的体积;(3)试在线段上确定一点,使得平面。
(本小题满分12分)已知圆和轴相切,圆心在直线上,且被直线截得的弦长为,求圆的方程
、(本小题满分12分)某市统计局就某地居民的月收入调查了10000人,他们的月收入均在内.现根据所得数据画出了该样本的频率分布直方图如下.(每个分组包括左端点,不包括右端点,如第一组表示月收入在内)(1)求某居民月收入在内的频率;(2)根据该频率分布直方图估计居民的月收入的中位数;(3)为了分析居民的月收入与年龄、职业等方面的关系,需再从这10000人中利用分层抽样的方法抽取100人作进一步分析,则应从月收入在内的居民中抽取多少人?
已知函数的最小值为.(1)求(2)若求及此时的最大值.(12分)