已知:如图,▱ABCD中,E、F分别是边AB、CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.
(本小题6分) 如图,在梯形中,,,,,,求的长.
(本小题7分)已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm.(1)求证:AC⊥OD;(2)求OD的长;(3)若2sinA-1=0,求⊙O的直径.
(本小题6分)二次函数的图象经过点(1,2)和(0,-1)且对称轴为x=2,求二次函数解析式.
(14分)已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线y=ax2+bx+c(a≠0)上的两动点.(1) 求抛物线的解析式;(2) 以点P为圆心,PO为半径的圆记为⊙P,判断直线l与⊙P的位置关系,并证明你的结论;(3) 设线段PQ=9,G是PQ的中点,求点G到直线l距离的最小值.
(13分)如图,在△ABC中,AB=AC=5,BC=6,点D为AB边上的一动点(D不与A、B重合),过D作DE∥BC,交AC于点E.把△ADE沿直线DE折叠,点A落在点A'处.连结BA',设AD=x,△ADE的边DE上的高为y.(1) 求出y与x的函数关系式;(2) 若以点A'、B、D为顶点的三角形与△ABC相似,求x的值;(3) 当x取何值时,△A'DB是直角三角形.