如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切, AD∥BC,连结OD,AC.(1)求证:∠B=∠DCA; (2)若tan B=,OD=, 求⊙O的半径长.
已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0).求二次函数的解析式.
已知抛物线y=x2+(2m+1)x+m+1,根据下列条件分别求m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为x=1.
如果函数y=a(x﹣1)2+c与函数y=x2+2bx+b2﹣5的顶点相同,且其中一个函数经过点(2,7),求这两个函数的解析式.
如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.
如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABEF是菱形.