已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求出△ABE和△BCF重叠部分(即△BEG)的面积;(2)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
已知:如图,把矩形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1. (1)求∠2、∠3的度数; (2)求矩形纸片ABCD的面积S.
如图所示的一块地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块地的面积.
如图,在□ABCD中,E、F分别为AC、CA延长线上的点,且CE=AF,请你探讨线段BF与DE位置及大小关系如何.
如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB. (1)试判断BC所在直线与小圆的位置关系,并说明理由; (2)试判断线段AC、AD、BC之间的数量关系,并说明理由; (3)若AB=16cm,BC=20cm,求大圆与小圆围成的圆环的面积.(结果保留)
如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F. (1)若∠E=∠F时,求证:∠ADC=∠ABC; (2)若∠E=∠F=42°时,求∠A的度数; (3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.