先化简再求值:(x+3)²+(x+2)(x-2)-4x(x+3),其中x²+3x=2.
如图,有一块含的直角三角板的直角边长的长恰与另一块等腰直角三角板的斜边的长相等,把该套三角板放置在平面直角坐标系中,且.若双曲线的一个分支恰好经过点,求双曲线的解析式;若把含的直角三角板绕点按顺时针方向旋转后,斜边恰好与轴重叠,点落在点,试求图中阴影部分的面积(结果保留).
某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(2)(部分)根据上图提供的信息回答下列问题:被抽查的居民中,人数最多的年龄段是 岁;已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);比较31~40岁和41~50岁这两个年龄段对博览会总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数该年龄段被抽查人数100%.
如图:把一张给定大小的矩形卡片ABCD放在宽度为10mm的横格纸中,恰好四个顶点都在横格线上,已知α=25°,求长方形卡片的周长。(精确到1mm,参考数据: sin25°≈0,cos25°≈0.9,tan25°≈0.5).
抛物线交轴于两点,交轴于点,已知抛物线的对称轴为直线,.(1)求二次函数的解析式;(2)在抛物线对称轴上是否存在一点,使点到两点距离之差最大?若存在,求出点坐标;若不存在,请说明理由;(3)平行于轴的一条直线交抛物线于两点,若以为直径的圆恰好与轴相切,求此圆的半径.
已知:如图,在直角坐标系xoy中,点A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.(1)求B、C两点的坐标;(2)求直线CD的函数解析式;(3)设E、F分别是线段AB、AD上的两个动点,且EF平分四边形ABCD的周长.试探究:当点E运动到什么位置时,△AEF的面积最大?最大面积是多少?