如图,已知AM∥BN,AC平分∠MAB,BC平分∠NBA。(1)过点C作直线DE,分别交AM、BN于点D、E,则AB、AD、BE三条线的长度之间存在何种等量关系?请直接写出关系式 。(2)如图,若将直线DE绕点C转动,使DE与AM交于点D,与NB的延长线交于点E,则AB、AD、BE三条线的长度之间存在何种等量关系?请你给出结论并加以证明。
已知:抛物线与x轴交于点A、B(A左B右),其中点B的坐标为(7,0),设抛物线的顶点为C.(1)求抛物线的解析式和点C的坐标;(2)如图1,若AC交y轴于点D,过D点作DE∥AB交BC于E.点P为DE上一动点,PF⊥AC于F,PG⊥BC于G.设点P的横坐标为a,四边形CFPG的面积为y,求y与a的函数关系式和y的最大值;(3)如图2,在条件(2)下,过P作PH⊥x轴于点H,连结FH、GH,是否存在点P,使得△PFH与△PHG相似?若存在,求出P点坐标;若不存在,说明理由.
观察计算:当,时,与的大小关系是_________________.当,时,与的大小关系是_________________.探究证明:如图所示,为圆O的内接三角形,为直径,过C作于D,设,BD=b.(1)分别用表示线段OC,CD;(2)探求OC与CD表达式之间存在的关系(用含a,b的式子表示).归纳结论:根据上面的观察计算、探究证明,你能得出与的大小关系是:______________.实践应用:要制作面积为4平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.
西瓜经营户以2元/kg的价格购进一批小型西瓜,以3元/kg的价格出售,每天可售出200kg.为了尽快售出,该经营户决定降价促销,经调查发现,这种小型西瓜每降价0.1元/kg,每天可多售出40kg.另外,经营期间每天还需支出固定成本24元.该经营户要想每天至少盈利200元,应将每千克小型西瓜的售价降低多少元?
已知二次函数.(1)求抛物线顶点M的坐标;(2)设抛物线与x轴交于A,B两点,与y轴交于C点,求A,B,C的坐标(点A在点B的左侧),并画出函数图象的大致示意图;(3)根据图象,求不等式的解集.